
GPFS Multi-File MPTIO
Results

GUPFS Project

Overview

This report documents the timing results of
the performance tests done on the GPFS
File-system. The primary focus of the
performance test was to measure the
streaming bandwidth in MB/second

The tests included single-stream and multi-
stream tests with different file sizes.

Test Configuration

• We used NERSC MPTIO benchmark to
test read and write small (in-cache) and
large (out-of-cache) files.

• All tests were run on a quiet system. There
were no other activities, neither on the
clients nor on the storage controller when
the tests were running.

The MPTIO Benchmark
• In MPTIO, a single MPI process is spawned on each

node.
• Each node creates M pthreads to perform the actual IO.
• When all threads are ready, the MPI processes perform

a barrier sync across the nodes so that all the processes
start at about the same time.
– There is certainly no guarantee this will happen, but generally

does when the nodes are not over-subscribed as is the case in
our tests.

• The MPI process then waits for all the local threads to
complete their IO and synchronizes with another barrier.

Timing in the MPTIO Benchmark

• Each thread records the total amount of elapsed (wall
clock) time it took to read/write its entire data region.

• Additionally, each MPI process records the elapsed time
from when it started the threads working and when they
all completed.

• Finally, the MPI RANK=0 process records the elapsed
time between the starting barrier and the ending barrier,
signaling that all threads on all nodes have completed.

• The per-thread timings are sent to the MPI RANK=0
process.

• The IO rate is then computed as the total amount of data
read/written by all threads divided by the maximum total
elapsed time as measured between the MPI barriers by
process 0.

Linux Configuration

The four test clients and 4 GPFS NSDs had
the following configuration:

• Dual 2.2 GHz Xeon P4 processors,
SuperMicro motherboard

• 2 GB 133 MHz ECC memory

Storage Configuration

• Tests utilized a DDN 8500 storage
controller formatted with a 512 byte block
size.

File-system Configuration

• All files were striped across all the NSDs
• Default settings were utilized except where

a 1MB file-size is indicated.

Separate File per Thread, In-cache,
Single Thread per Node

P_IC_T1 Read

0

20

40

60

80

100

120

1 2 3 4 5 6

Num Proc

R
at

e
(M

B
/s

)

GPFS 2.2 NSD std
GPFS 2.2 NSD 1M

Separate File per Thread, In-cache,
Single Thread per Node

P_IC_T1 Write

0

50

100

150

200

250

1 2 3 4 5 6

Num Proc

Ra
te

 (M
B/

s)

GPFS 2.2 NSD std
GPFS 2.2 NSD 1M

Separate File per Thread, In-cache,
Four Threads per Node

P_IC_T4 Read

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6

Num Proc

Ra
te

 (M
B/

s)

GPFS 2.2 NSD std
GPFS 2.2 NSD 1M

Separate File per Thread, In-cache,
Four Threads per Node

P_IC_T4 Write

0

50

100

150

200

250

1 2 3 4 5 6

Num Proc

R
at

e
(M

B
/s

)

GPFS 2.2 NSD std
GPFS 2.2 NSD 1M

Separate File per Thread, Out-of-
Cache, Single Thread per Node

P_OC_T1 Read

0

20

40

60

80

100

120

1 2 3 4 5 6

Num Proc

R
at

e
(M

B
/s

)

GPFS 2.2 NSD std
GPFS 2.2 NSD 1M

Separate File per Thread, Out-of-
Cache, Single Thread per Node

P_OC_T1 Write

0

50

100

150

200

250

1 2 3 4 5 6

Num Proc

R
at

e
(M

B
/s

)

GPFS 2.2 NSD std
GPFS 2.2 NSD 1M

Separate File per Thread, Out-of-
Cache, Four Threads per Node

P_OC_T4 Read

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

Num Proc

R
at

e
(M

B
/s

)

GPFS 2.2 NSD std
GPFS 2.2 NSD 1M

Separate File per Thread, Out-of-
Cache, Four Threads per Node

P_OC_T4 Write

0

50

100

150

200

250

1 2 3 4 5 6

Num Proc

Ra
te

 (M
B/

s)

GPFS 2.2 NSD std
GPFS 2.2 NSD 1M

Conclusion

• TBD: Runs in progress

	GPFS Multi-File MPTIO Results
	Overview
	Test Configuration
	The MPTIO Benchmark
	Timing in the MPTIO Benchmark
	Linux Configuration
	Storage Configuration
	File-system Configuration
	Separate File per Thread, In-cache, Single Thread per Node
	Separate File per Thread, In-cache, Single Thread per Node
	Separate File per Thread, In-cache, Four Threads per Node
	Separate File per Thread, In-cache, Four Threads per Node
	Separate File per Thread, Out-of-Cache, Single Thread per Node
	Separate File per Thread, Out-of-Cache, Single Thread per Node
	Separate File per Thread, Out-of-Cache, Four Threads per Node
	Separate File per Thread, Out-of-Cache, Four Threads per Node
	Conclusion

